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1 The model

e It allows to study the entropic effects on the wall as
well as further studies using realistically modeled
biopolymers.

e The model interpolates between the united atom model
and the bead-spring model. In contrast to these two
models it uses non-spherical force fields for the
non-bonded. interaction

e The main idea of this approach with a more general
form of the force field is to generalize the united atom
model in a way that larger atom groups are combined
to one construction unit, but the possible anisotropy of
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these groups is still taken into account.

e As one wants the force field to degenerate into a sphere
with increasing distance, we use a con-focal force field
inside this interaction volume:

— C
2 )

Hinter — ‘/;bs ( (1>

where d<1p ) and dép ) denote the distance of the point p
to the focal points of the ellipsoid and V. is the
absolute potential.

e For convenience we use only a repulsive part

Vs (1) ~ 177" . (2)
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e The mass of the building units is distributed between
the focal points of the ellipsoids in the hard core region
of the con-focal potential.

e The main ingredient of the model is the mass matrix of
our rod-chains. In order to construct it we, must first
calculate the Lagrangian of a single rod £; =1, — V;
with the kinetic energy T; and the potential energy V;.
The subindex 7 marks the position of the rods in the
chain. This one-dimensional homogeneous rod ¢ has the
length [; starting at a; and ending at I;;

e If we suppose that the rods all have the same mass m
and that the velocity of the rod mass scales linearly

with the position between the boundaries of the rod,
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the kinetic energy can be written as

L]
—

1 -2 _',—') 52

T l/lim<(lim)§};+xbi

2

>dx

e Adding the single terms of the rods building the chain

we get the Lagrangian £ of the whole rod chain.

e The equations of motion of the chain can be calculated

from the Lagrange equations of the second kind. Since

the equations of motion separate in each direction, we
have only to solve three tridiagonal (N + 1) x (N + 1)
matrices per chain which consist of NV rods per time
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step of the form

(21 0
ml 1 4 1
6] 0 1 4

\

Wz = F (3)
0 ...\ [ & ) [ Fo )
0 ... i) Fiy + Fy

1

A

with the force F}; on the coordinate j of the flexible

point ¢ of the chain

0j

F,

1]

(5)

and ¥; denote the accelerations of the flexible points of
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the chain. The flexible points are the link points of the
ellipsoids and the end points of the rod chain. The
sub-indices mark the positions in the chain: 0 and

N + 1 are the end-points of the chain and the numbers
between them denote the linking points of rods in the
chain.

e The bonded interactions between neighboring units are
given by harmonic length and angle potentials:

1

Hbond — §]€(T _ TO)Z (6)
1
Hangle = 5]{9(608 0 — cos )’ (7)

with the bond lengths r and the bending angles #. Here
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ro and 6y denote the mean values.

2 Mean-Field Theory for the Pressure
that a Grafted Chain exerts on the
Wall

e Consider a wall with a repulsive r® potential and a
polymer grafted at the wall. The constraint that the
polymer is grafted and that one half-space is excluded
leads to a competition between the necessity to avoid
the wall and the constraint to be fixed at the wall.

e Due to the entropy the monomers would like to stay as
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far away from the wall as possible.
e In order to do so they exert a pressure on the wall.
e This pressure decreases radially from the grafting point.

e For a theoretical treatment of the pressure we shall
regard an elastic wall.

e Let the surface of the wall be described by h(z,y). The
thermodynamic properties of the chain of length N
grafted at the repulsive wall can be described by the
propagator G (7, 7") resulting from the Edwards
equation
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with the Gy (7,7") = 0 at the wall and limy_o Gn(7,7)
= 0(r, 7).

e The partition function is then given by

Zn(l) = / WGy () (9)

where the integral extends over all space that is

available to the free end. The Greens-function for a
planar wall A(z,y) = 0 can then be factorized as

3 3/2 3(x — x’)?
0) /-
Gg\r)(r’ F/) = (277Nl2> exp [— SN2 exp | —

3(z — z/)2 3(z + z/)2
NPT TN | P T T o2

3(y —y')?
ON12

)
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e The partition function is therefore
0 +00 +00 +00
zO) = / da’ / dy' / d2'GW (1, 7)(10)

= erf( QR) , (11)

where R, = 1/NI?/6 is the radius of gyration of the
free chain and erf the error function.

e To compute the pressure we introduce a small
perturbation in A. We can write the partition function
as Ay = Z]<\(,)) -+ Z}&) -+ Z](\?) + ..., where Z;é) is of order
h' and Z%; as in (10).

e Due to the linearity of (8), each term satisfies the
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Edwards equation

az(i) 2 i
a—]fVV:EAZJQ i=0,1,2,... (12)

e The solutions of higher orders are coupled to the
constraint. Now we have

0 = Zn(z,y,h)
= Zn(z,y,0) + h(z,y) aazzN (z,y,0) + " (;’y) aanN (z,9,0)+ ...
e IFor the linear contribution Z](\}) we get
(0)
] 0z
Zy)(2,9,0) = —h(z,y) =" (2,9.0) . (13)
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yielding |?]

. 2 [N OGS,
200 =5 [ an [as—= @y 00z @y . (4

e Hence, the change in the height is, to first order, due to
the work

AW = W[h] — W|[0]

Iy
—kBT log [1 + Z_()]
N

— /dSp(m,y)h(fan) )
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where p(x,y) has the symmetric form

() kT 1+7“2+Z2 . r 4 2
r) = Xp | —
P (¥ 2o 2r2 )P | T TAR,
(15)

with r = /22 + y2.
e To push at 7= (z,y) an elementary volume of
dV (r) = h(r)dS we need the work dW = p(r)h(r)dS.

e The function p(r) is the pressure.

e The entire entropic force which the chain exerts on the
wall is then given by

> kgT [?
ro= dr2 = —— ——1| (16
/o r2mwrp(r) l exp [ 4R§] (16)
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kT 3

RSN -

3 Simulation Results

e 10 different chain lengths NV =20, N =40, N =60, N =
80, N =100, N =125, N =150, N = 175, N = 200 and
N = 250 to study the pressure and the corresponding
finite effects.

SS 2005 Heermann - Universitdt Heidelberg Seite 14



Graduiertenschule

Radius vs. Height Distribution

Probability

Abbildung 1: Shown is the distribution of the height with respect to
the radius. The values are divided by their respective radii of gyration

for reasons of finite-size scaling.
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Finite Size Scaled Pressure Distribution for all Chain Lengths

a N=2
a - ( 1 Ix2+|§ )exp ( _x2+§ ) —|_ O
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Abbildung 2: Finite-size scaling plot for the pressure distribution. The
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Entropic Force on Wall vs. 1/N

1 B Self Avoiding Chain
099 [— A Gaussian Chain
0.98 |—
- —
o 097 —
X ~
= ~
w096 —
0.95 [—
094 | —
0.93 |—
|
0 0.071 0.02 0.03 0.04 0.05

Abbildung 3: Shown is the entropic force exerted on the wall by the

polymer. The figure gives the result for the Gaussian and for the chain

with self-avoidance.
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4 Force-elongation behavior

e Knowing the distribution function, we can calculate the

partition function of the polymer with an external

7 = /df'pN(f’) exp (%) . (18)

But it is also possible to derive the desired results by

force:

fundamental reasoning.

e We only need to introduce the two characteristic
lengths for the problem, Rp = [N and &, =T/f. In
general, the norm of the mean end to end distance
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vector can be written as:

<f’(f)>‘ = Rryp, (%:) = Rpor(2), (19)

where ¢,.(x) is a dimensionless function.

e In the case of small forces one expects a linear response
of the polymer, so that we can write lim, .o ¢, () = x.
Using this we get:

(FA))| = 22 20

e If the chain is stretched stronger, we expect deviations

from the linear law. Let us assume that the stretched
chain is composed of “blobs”, i.e. small chain-balls.
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Each of these blobs has a size of £,. In such a blob the

external force is just a small perturbation, so we can
write for the number of monomers g, in the blob:

& =gy (21)

w=(17) " 22)

e Considering that the number of the blobs must be

or:

N/g,, one obtains for the three dimensional case:

<F(f)>‘ ~ Egp ~ N (%)mg. (23)

9p

e Hence for large forces the elongation behavior is not
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linear. For the case of stretched polymers one can look

again at the distribution function, which has the form

exp(—(r/Rr)°). The resulting entropy is:

5
S(r) = const + Inpy(r) = const — (R—) .

e In this case the corresponding elastic free energy

amounts to:

)
r
Fiy=T1|1— | — fr.
tot (RF> Jr

e If one minimizes this expression, one obtains the

(24)
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wanted relation between force and end-to-end distance:

T 0—1
= <J§F> . (26)

We have seen how to calculate the relation between

applied force and resulting elongation for long chains
with self-avoiding as well as without self-avoiding. This
result is important but not satisfactory. If one considers
that the polymer cannot rupture, than the extension
should be NI for very large forces but in the results
above it seems that the polymer chain can be stretched
to infinite length. Furthermore, the case of a restricted
geometry is not included. Both will be done in the next
sections.
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4.1 Large force-elongation behavior

e We now come back to the ideal polymer chain without
self-avoidance. This seems to be a step back, but it
gives the ability to calculate the exact force-elongation
behavior for any force.

4.1.1 Force-elongation behavior for the ideal chain

e First we calculate the work that is performed by a force
f if the polymer is elongated by dR. This is:

N N
SA=—f-6R==Y f-dii=-> dp;  (27)
=1 1=1
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where p; = f -7 = f -1 cos(;). So the partition

function 1s

7 - / exp (f: (%) cos(t%)) ﬂsin(ﬁi)dﬁidgpi.
- - (28)

e The multidimensional integral can be separated:

([ exp<

If one introduces

ﬂL

(19)) sin(ﬁ)dﬁdgp)N. (29)

fT one gets:

. N
7 4 smh(ﬁ)) |

5 (30)
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e The exact force-elongation behavior is:

R=|R|= N1 (coth(§) - %). (31)
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Force-elongation-behaviour

B — Ideal chain

------- 1 monomer chain
---- 10 monomer chain [/
----- 5 monomer chain
--- 2 monomer chain

Relative elongation
o
=

0,2

2 3 4 5
T Force o

SS 2005 Heermann - Universitdt Heidelberg Seite 26




Graduiertenschule

e Now we restrict the geometry by a wall. Suppose that
one monomer is attached to the wall. Starting with a
single monomer, we will see what happens when we
introduce the wall. The possible angle between the
force f and the monomer of length [ is restricted to a
range of |0; 7]. Because of the cylinder-symmetry of this
problem, the angle ¢ is still arbitrary. For the

one-monomer partition function we get

71 = /0 W/OE exp(0 cos(1)) sin(vV)dddp. (32)

e For the partition functions of the longer chains the
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p-integration will also range over 27, so we define:

A

Zy = 2m)" - Zy. (33)
For 21 we get:
. P _1
A——
o

Now assume two monomers attached to a wall. If the

(34)

chain is appended by a further monomer the first one
will not be influenced by the second. But the possible
angles between the new monomer and the force are

dependent on the position of the first monomer.

e We have two different cases to consider. The first case is
that the distance of the end of the first monomer to the
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wall is large enough that all angles between the second
monomer and the force are possible. In the other case
the end of the first monomer is situated closer to the
wall. This means the possible angles between the force
and the second monomer have to be calculated.

If we call the integration-angle of the two monomers v
and v we get for the possible angles:

0 <, <7m—1. (35)

So, we get for To:

Zy = /05 /O7T 1 exp(B(cos(v)+cos(d2))) sin(vy) sin(ds)dy
(36)

—
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e With the substitution z; = cos(J;) we have

1l
Ty = /0 /a:]L exp(B(x1 + x2))dradr;. (37)

e Therefore, we obtain:
Lef el . 1

ﬁ(e“”1 —e Ndxy = =7, — =
0

2= 5475

e From now on, we define

1
0

e et us look now at the case of three and more
monomers. By taking more monomers into our chain,
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we increase the number of configurations for the
polymer. At each step we know that the already
existing monomers are not influenced by the new one.
So we must find out how the possible angle for the last
monomer is restricted.

e We see that in a chain with N monomers, the position
for the last one does only depend on the position of the
ending point of the (N — 1)th monomer. If this
monomer ends in a distance from the wall that is larger
than a monomer length, then the last monomer can
take place in any position.

e But if the end of the (/N — 1)th monomer is closer to
the wall than one monomer length, the possible angles
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for ¥ are restricted. In this case we get for the
three-monomer-chain an upper integration limit of
V3.maz = T — ¥ = m — arccos(cos(v1) + cos(3)). The

partition function is now:

A % T—11 m—a(¥1,92)
3 = / / / exp(B(cos(¥1) + cos(s) + cos(U3S
0 0 0
. Sin(ﬁl) Sin(ﬁg) Sin(ﬁg)dﬁgdﬁgdﬁl,

where we used a(vq, ;)

arccos(cos(t;) + cos(tz)) 0 < cos()y) 4 cos()s) <

0 1 < cos(v) 4 cos(s)
(40)

a(ﬁl, 192) = {
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e With the Substitution for a(d,, 1) and
b(x1,x9) = cos(a(v,92)) we obtain

Ty = / / / exp(B(x1 + x2 + x3))dr1dreds.
b(x1,r2)
(41)
b(x1,x9) can be written as

b(xq,xs) ZQSZ Zﬂ% 1—2% )+ O( sz—l

101
(42)
from which we obtain the integral:

/1 /1 exp(ﬁ(f;l + 3;2)) (66 B e_ﬁb(m,m))dgjidﬁi
0 J—mz
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_ _Z2__ / / B+ —b(ar,2)) (44)

e We can write:
S
I = / / exp(B(x1 + o — b(x1, T2)))dxadxy. (45)
0 —I1

e Now we can generalize the formulae for NV monomers in

the following way:

1 1 N
ZN — (27T)NZN — (27T)N / exp(ﬁzmz)
0 —bN(xl ..... 37N—1) i=1
(46)
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With the integrals Iy:

1 1 N
[N — / exrp (ﬂ(ZIZ—bN+1(x1, s UN
0 —bN(xl ..... a:N_l) i=1
(47)
and the by
N-1 N-1 N-1 N-1
by(z1, - ono1) = Yy mOY 3)O(1=)  x)+0( > x4
1=1 1=1 1=1 1=1
(48)

one obtains by recursive insertion the following

SS 2005
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partition function

Zn = (2m)N ((%)N - eﬁji (%)N L;) . (49)

e We use [j = 1. Now we must calculate the I;’s, or we
must find a way to simplify them. As an alternative to
the preceding, we can use for the case of three or more
monomers

7= ( /O " /O " exp (%coswo sin(z?)dﬁdgp)N. (50)

e Here any angle between the monomers and the force is
allowed. In the case with the wall this is not always
true for all monomers, hence we introduce an effective
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angle for all monomers. If we do this, we get:

7 = ( /O i /O " (%cos(ﬁ)) sm(ﬁ)dﬁd@)N (51)

e The calculation of this integral gives:

7 = (%T(exp(ﬁ) — exp(f COS%))))N

e For the average end-to-end distance we obtain

o dtaep(fa-1) 1
R=N T ep(Bla=) 3

with a = cos(vy).

(52)

(93)
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e For ¥y — m, what means @ — —1 we get the

well-known formula:

1
R=N -1l (coth(8) — E) (54)
o With  — 0 we get: R = %(a—kl). And for 8 — oo we
get: R = NI. This gives us now an approximation for

the end-to-end distance if we have the effective angle

Vo.

SS 2005 Heermann - Universitdt Heidelberg Seite 38



Graduiertenschule

Force-elongation-behaviour
N=10

Ideal chain
N=10
N=19
N=39
N =59
N=79
N =99
N =124
N =149 —
N=174
N =199
N = 249

X* X +v<dA>SOO |

Relative elongation

Abbildung 5: Shown are the force-elongation simulation results for all

simulated chain lengths compared to the ideal chain behavior.

SS 2005 Heermann - Universitidt Heidelberg Seite 39



Graduiertenschule

Relative elongation

Force-elongation-behaviour
Large forces

O N=99
¢ © O N =249
& N=39
* N=174
— ldeal chain
0,8
| . | . | .
2 3 4

Abbildung 6: End-to-end-distance for large forces
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Exponent for intermediate forces
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Abbildung 7: Elongation exponent for intermediate forces
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In the small-force range we have two predictions for the
force-elongation behavior, one for simple random walks
and the other for the self-avoiding walks. In both cases a
linear behavior is predicted. In the ideal case we expect a
fix spring constant for any polymer length, but in the
self-avoiding case the spring constant depends of the chain
length. Now we will investigate if this dependence is
reproduced by the simulations. But first the theoretical
spring constants

[

ZNO'184
Koo = 7 (56)

(here ”id” means ideal and ”sa” means self-avoiding). The
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fit to the data is shown in figure (8), where we can see the
spring constant for the different polymer length.
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Fitted spring constant for low forces

¢ Simulation Data
1_ — Flt . T —]

Spring constant

A B B . I B
00 50 100 130 200 250 300

Abbildung 8: Spring constants for the low force range

SS 2005 Heermann - Universitdt Heidelberg Seite 44



Graduiertenschule

Force-elongation-behaviour

N=10
1 ' ' | ' | ' '
E 0,8_ e i fg;lljlf(t)i?nnoﬂztr?\er chain |
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Abbildung 9: Force-elongation behavior for 10 monomer chains
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