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• In conventional Monte-Carlo (MC) calculations of

condensed matter systems, such as an N -particle

system with a Hamiltonian H = U , only local moves

(displacement of a single particle) are made.

• Updating more than one particle typically results in a

prohibitively low average acceptance probability 〈PA〉.

• This implies large relaxation times and high

autocorrelations especially for macromolecular systems.

• In a Molecular Dynamics (MD) simulation, with

H = T + U , on the other hand, global moves are made.

• The MD scheme, however, is prone to errors and

instabilities due to the finite step size in time.
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• In order to introduce temperature in the microcanonical

context, isokinetic MD schemes are often used.

• However, they do not yield the canonical probability

distribution, unlike Monte-Carlo calculations.

• The Hybrid Monte-Carlo (HMC) method combines the

advantages of Molecular Dynamics and Monte-Carlo

methods: it allows for global moves (which essentially

consist in integrating the system through phase space);

HMC is an exact method, i.e., the ensemble averages

do not depend on the step size chosen; algorithms

derived from the method do not suffer from numerical

instabilities due to finite step size as MD algorithms do;

and temperature is incorporated in the correct
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statistical mechanical sense.

• In the HMC scheme global moves can be made while

keeping the average acceptance probability 〈PA〉 high.

• One global move in configuration space consists in

integrating the system through phase space for a fixed

time t using some discretization scheme (δt denotes the

step size)

gδt : IR6N −→ IR6N

(x, p) −→ gδt(x, p) =: (x′, p′)

of Hamilton’s equations
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dx

dt
=

∂H

∂p

dp

dt
= −

∂H

∂x
. (1)

• Since the system is moved deterministically through

phase space, the conditional probability of suggesting

configuration x′ starting at x is given by

pC(x → x′)dx′ = pC(p)dp. (2)

• The initial momenta are drawn from a Gaussian

distribution at inverse temperature β:
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pC(p) ∝ e−β
PN

j=1

p2
j

2m . (3)

• Thus

PA((x, p) → gδt(x, p)) = min{1, e−βδH}, (4)

where

δH = H(gδt(x, p)) −H(x, p)

is the discretization error associated with gδt. Using the

algebraic identity

e−H(x,p) min{1, e−δH} = e−H(gδt(x,p)) min{eδH, 1} (5)
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• it can be shown that for a discretization scheme which

is time-reversible

g−δt ◦ gδt = id (6)

and area-preserving

det
∂gδt(x, p)

∂(x, p)
= 1, (7)

detailed balance is satisfied:

p(x)pM(x → x′)dxdp = p(x)pC(p)PA((x, p) → gδt(x, p))dxdp

= p(x′)pC(p′)PA(gδt(x, p) → (x, p))dxdp
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= p(x′)pC(p′)PA((x′, p′) → g−δt(x′, p′))dxdp

= p(x′)pC(p′)PA((x′, p′) → g−δt(x′, p′))dx′dp′

= p(x′)pM(x′ → x)dx′dp′.

• Thus, provided the discretization scheme used is

time-reversible and area-preserving, the HMC algorithm

generates a Markov chain with the stationary

probability distribution p(x).

• The probability distribution is entirely determined by

the detailed balance condition.

• Therefore neither p(x) nor any ensemble averages

depend on the step size δt chosen.
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• However, the average acceptance probability 〈PA〉,

because of (4), depends on the average discretization

error 〈δH〉 and hence does depend on δt.

• It can be shown that for (%, T ) 6= (%c, Tc)

〈PA〉 = erfc(
1

2

√

β〈δH〉)

is a good approximation for sufficiently large systems

(N → ∞) and small step sizes (δt → 0).

• From normalization and the area-preserving property

one has

〈e−βδH〉 = 1. (8)
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• Equation (8) can be expanded into cumulants

〈δH〉 =
β

2
〈(δH− 〈δH〉)2〉 + · · · .

• In order to obtain a nonzero average acceptance

probability 〈PA〉 in the limit N → ∞ one has to let

δt → 0, keeping 〈(δH− 〈δH〉)2〉 fixed.

• In this limit higher-order cumulants will vanish. The

resulting distribution of the discretization error will

thus be gaussian with mean and width related through

〈δH〉 =
β

2
〈(δH− 〈δH〉)2〉. (9)

• From (4) and (9) one has in this case
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〈PA〉 =
1

√

2π〈(δH− 〈δH〉)2〉

∫

∞

−∞

dtmin{1, e−βt}e
−

(t−〈δH〉)2

2〈(δH−〈δH〉)2〉

= erfc(
1

2

√

β〈δH〉). (10)

• The square root in (10) is always well defined since (8)

implies

〈δH〉 ≥ 0.

• Equality holds in the limit δt → 0, where energy is

conserved exactly and 〈PA〉 = 1.

• Increasing the step size will result in a lower average

acceptance probability 〈PA〉. Varying δt, the average
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acceptance probability 〈PA〉 can thus be adjusted to

minimize autocorrelations.

• The momenta do not necessarily have to be drawn from

the Gaussian distribution.

• A particularly simple and computationally efficient

alternative to would be a uniform momentum

distribution.

• This choice, however, did not prove successful, since a

cut-off has to be introduced for computational reasons.

This cut-off must be taken into account in PA, leading

to a very low average acceptance probability 〈PA〉.
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• It is clear that instead of choosing a discretization

scheme of Hamilton’s equations (1) any time-reversible

and area-preserving discrete mapping can be used to

propagate the system through phase space.
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